Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.29.360578

ABSTRACT

Current transmission rates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are still increasing and many countries are facing second waves of infections. Rapid SARS-CoV-2 whole genome sequencing (WGS) is often unavailable but could support public health organizations and hospitals in monitoring and determining transmission links. Here we report a novel reverse complement polymerase chain reaction (RC-PCR) technology for WGS of SARS-CoV-2. This technique is unique as it enables library preparation in a single PCR saving time, resources and enables high throughput screening. A total of 173 samples tested positive for SARS-CoV-2 between March and September 2020 were included. RC-PCR WGS applicability for outbreak analysis in public health service and hospital settings was tested on six predefined clusters containing samples of healthcare workers and patients. RC-PCR resulted in WGS data for 146 samples. It showed a genome coverage of up to 98,2% for samples with a maximum Ct value of 32. Three out of six suspected clusters were fully confirmed, while in other clusters four healthcare workers were not associated. Importantly, a previously unknown chain of transmission was confirmed in the public health service samples. These findings confirm the reliability and applicability of the RC-PCR technology for SARS-CoV-2 sequencing in outbreak analysis and surveillance.


Subject(s)
Genomic Instability
SELECTION OF CITATIONS
SEARCH DETAIL